Photocatalysis of Oligo(p-phenylene) Leading to Reductive Formation of Hydrogen and Ethanol from Triethylamine in Aqueous Organic Solvent

Shinjiro MATSUOKA, Hiroyuki FUJII, Chyongjin PAC, and Shozo YANAGIDA* Chemical Process Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565

Oligo(p-phenylene)s, i.e., p-terphenyl to p-sexiphenyl, catalyze photoreductive formation of H_2 and ethanol in photolysis of aqueous solution of triethylamine under >290-nm irradiation in the presence of $RuCl_3$. p-Terphenyl shows unusually effective photocatalysis for the formation of ethanol in aqueous tetrahydrofuran even without $RuCl_3$.

We previously reported the photocatalysis of poly(p-phenylene) (PPP) for the reduction of water, ketones and olefins with triethylamine (TEA) as a sacrificial electron donor in the presence of Ru particles which formed by the concurrent photolysis of $RuCl_3$. These findings prompted us to know the minimum length of the p-phenylene chain for the photo-induced charge separation and the electron transfer. This paper reports that oligo(p-phenylene)s (OPP-n, n=3-6) primitively show the photocatalytic activity under UV light (>290 nm) toward water and acetaldehyde.

As reported in the PPP-catalyzed photoreaction, distilled water, TEA, methanolic RuCl_3 solution (6 x 10^{-3} mol dm⁻³) (each 0.5 cm³), and 10 mg of each OPP-n or PPP (synthesized by Yamamoto's method³)) were placed in a Pyrex tube (8 mm in diameter). After purging with argon gas, the tube was closed off with a gum stopper, and irradiated under magnetic stirring for 6 h at >290 nm using a 500 W high-pressure mercury arc lamp. The inner gas and liquid products were analyzed by GLPC as reported.¹)

We have now found that OPP-n starting from p-terphenyl exhibit photocatalysis for the photoreduction not only of RuCl_3 to Ru^0 and water to H_2 but also of the concomitantly formed acetaldehyde to ethanol as follows (Table 1);

OPP-n
$$\xrightarrow{h \nu}$$
 OPP-n (e + h) RuCl₃ \xrightarrow{e} Ru⁰ H₂O $\xrightarrow{e/\text{Ru}^0}$ H₂O (Et)₂NCH₂CH₃ $\xrightarrow{-H^+}$ (Et)₂N⁺CHCH₃ $\xrightarrow{OH^-}$ CH₃CHO $\xrightarrow{2e, 2H^+}$ CH₃CH₂OH

Since OPP-n (n=4-6) are almost insoluble in the reaction systems, the photocatalysis must work heterogeneously. The catalysis for the formation of $\rm H_2$ tends to increase with the number of the phenylene unit. It is noteworthy, however, that photocatalysis of OPP-3 led to the most effective formation not only of $\rm H_2$ but also of ethanol. The OPP-3-catalyzed photoreduction of $\rm D_2O$ gave $\rm D_2$, DH, and $\rm H_2$ in a 51 : 38 : 11 ratio, indicating that

the major source of H_2 is Table 1. OPP-Catalyzed Photolysis of TEA in the Presence of RuCl₃ water.

Taking into account fair solubility of OPP-3 in methanol, the photolysis with OPP-3 or OPP-4 was carried out in aqueous THF where OPP-3 and OPP-4 are still more soluble. As shown in Table 1, more effective photoredox reactions were observed for OPP-3 and OPP-4. In

reactions, the formation

	Absorption ^{a)} λ_{\max}/nm	Solubilityb) g cm ⁻³	Photop ^H 2	roduct ^e DEA ^d)) _{/μmol} Ethanol
OPP-2	245	(440)	0.8	_	_
OPP-3	283	0.28 (8.5)	5.9	42	29
OPP-3		>1.0 ^{e)}	40 ^e)	$173^{ m e})$	₉₄ e)
OPP-4	300	<0.01 (0.22)	1.0	14	1.2
OPP-4			5.7 ^{e)}	18 ^{e)}	4.6 ^{e)}
OPP-5	311	<0.01 (<0.1)	1.6	20	2.0
OPP-6	316	<0.01 (<0.01)	2.8	22	2.0
PPP	425 ^f)	≑ 0	54	87	6.5

a) Measured in THF. b) In methanol at 20 $^{\circ}\text{C}$. In parentheses OPP-3-catalyzed photo- is each solubility in toluene. 3) c) After irradiation at >290 nm for 6 h. d) Diethylamine. e) In aqueous THF. f) Band gap. 1)

of Ru⁰ particles (ca. 70 nm) was confirmed by direct TEM observation. Interestingly, OPP-3 was found still effective for the formation of ethanol in the photolysis without RuCl₂ (Fig. These observations suggest that the dissolved OPP-3 should play an effective role in both photooxidation of TEA and photoreduction of acetaldehyde to ethanol and that R⁰ formed in OPP-n systems should work as electron relays for the reduction of water in the same way as in some photocatalyses. 1,4) Further studies on the noble photo-induced charge separation on OPP-n are in progress.

References

1) T. Shibata, A. Kabumoto, T. Shiragami, O. Ishitani, C. Pac, and S. Yanagida, J. Phys. Chem., 94, 2068(1990).

Fig. 1. OPP-3 Catalyzed photolysis of triethylamine in aqueous THF: with $RuCl_3$, (\blacksquare) H_2 , (\blacktriangle) EtOH, (\blacksquare) DEA; wihtout $RuCl_3$, (\bigcirc) H_2 , (\triangle) EtOH, (□) DEA.

- 2) T. Yamamoto, H. Hayashi, and A. Yamamoto, Bull. Chem. Soc. Jpn., 51, 2091 (1978).
- 3) W. Kern, H. W. Ebersbach, I. Ziegler, Makromol. Chem., 31, 154 (1959).
- 4) E. Amouyal, "Homogeneous and Heterogeneous Photocatalysis," ed by E. Pelizzetti and N. Serpone, D. Reidel Publishing Company, Dordrecht (1986), p. 253 and references cited therein. (Received May 15, 1990)